The development of heterojunction photocatalysts is still limited by poor interfacial charge carriers separation efficiency. In this work, we have successfully designed CdS/Pt/N-NaNbO3 multilayer bridged nanostructure by embedding of Pt nanoparticles (NPs) into the interface between CdS quantum dots (CdS QDs) and perovskite N-doped NaNbO3. The Pt NPs not only play the role of bonding CdS QDs and NaNbO3, but also provide a motive force for the charge carriers transfer and enormously shorten the migration path. Apart from the efficient Z-scheme charge transmission path of the CdS/Pt/N-NaNbO3 nanorods, strong visible light absorption (400-800 nm) can also be tailored by N doping and introducing of Pt NPs, CdS QDs, demonstrated by the UV-Vis. DRS measurement. As expected, the photocatalytic hydrogen evolution rate of 18%CdS/2%Pt/N-NaNbO3 nanorods is 134 and 28 times higher than that of bare NaNbO3 nanorods and CdS QDs, respectively, under visible light (λ > 420 nm). This is the highest value so far reported among the NaNbO3-based photocatalysts. This study has important implications for photocatalytic hydrogen evolution and novel fabrication of NaNbO3-based materials.
相关推荐
Congratulations to Jiayi Meng on recent paper published in "Journal of Colloid And Interface Science"
祝2025届全体毕业生毕业快乐!
Congratulations to Quanmei Zhou on recent paper published in "Molecules" Recent Studies on the Construction of MOF-Based Composites and Their Applications in Photocatalytic Hydrogen Evolution
Congratulations to Yuchen Wei on recent paper published in "Catalysts" The Construction and Photocatalytic Application of Covalent Triazine Framework (CTF)-Based Composites: A Brief Review
Congratulations to Huihui Zhang on recent paper published in "Separation and Purification Technology"