The development of heterojunction photocatalysts is still limited by poor interfacial charge carriers separation efficiency. In this work, we have successfully designed CdS/Pt/N-NaNbO3 multilayer bridged nanostructure by embedding of Pt nanoparticles (NPs) into the interface between CdS quantum dots (CdS QDs) and perovskite N-doped NaNbO3. The Pt NPs not only play the role of bonding CdS QDs and NaNbO3, but also provide a motive force for the charge carriers transfer and enormously shorten the migration path. Apart from the efficient Z-scheme charge transmission path of the CdS/Pt/N-NaNbO3 nanorods, strong visible light absorption (400-800 nm) can also be tailored by N doping and introducing of Pt NPs, CdS QDs, demonstrated by the UV-Vis. DRS measurement. As expected, the photocatalytic hydrogen evolution rate of 18%CdS/2%Pt/N-NaNbO3 nanorods is 134 and 28 times higher than that of bare NaNbO3 nanorods and CdS QDs, respectively, under visible light (λ > 420 nm). This is the highest value so far reported among the NaNbO3-based photocatalysts. This study has important implications for photocatalytic hydrogen evolution and novel fabrication of NaNbO3-based materials.
相关推荐
Congratulations to Huihui Zhang on recent paper published in "Separation and Purification Technology"
Congratulations to Xinglin Wang on recent paper published in "Advanced Functional Materials"
Congratulations to Yamei Huang on recent paper published in "Applied Catalysis B: Environment and Energy" Nb2C MXene quantum dots modulate built-in electric field within heterostructures for efficient solar-to-H2O2 conversion from seawater
Congratulations to Yifan Liao on recent paper published in "Chemistry-An Asian Journal" Highly Efficient Schottky Heterojunctions for Photocatalytic Hydrogen Evolution: Facile Synthesis of Hollow Nano-ZnSe Spheres on Ti3C2-Nanosheets
Congratulations to Yu Zhang on recent paper published in "Separation and Purification Technology " Interface interaction modulates charge transfer in flower-like In2S3 nanosheets/COF composite for efficient solar-to-H2O2 conversion